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Abstract. Navier–Cauchy format for Continuum Mechanics is based on the concept of contact interaction between sub-bodies
of a given continuous body. In this paper, it is shown how—by means of the Principle of Virtual Powers—it is possible to
generalize Cauchy representation formulas for contact interactions to the case of Nth gradient continua, that is, continua
in which the deformation energy depends on the deformation Green–Saint-Venant tensor and all its N − 1 order gradients.
In particular, in this paper, the explicit representation formulas to be used in Nth gradient continua to determine contact
interactions as functions of the shape of Cauchy cuts are derived. It is therefore shown that (i) these interactions must
include edge (i.e., concentrated on curves) and wedge (i.e., concentrated on points) interactions, and (ii) these interactions
cannot reduce simply to forces: indeed, the concept of K-forces (generalizing similar concepts introduced by Rivlin, Mindlin,
Green, and Germain) is fundamental and unavoidable in the theory of Nth gradient continua.
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1. Introduction

The Principle of Virtual Powers (or Virtual Works) is very ancient (see e.g., [131] and has been always
considered by those French mechanicians (see e.g., [29,30,59–62,84,87,88,110] ) who follow the ideas of
D’Alembert and Lagrange as the basic concept in mechanics. More recently, we can witness to a revival
of the Principle of Virtual Powers: many authors (see e.g., [51–53,57,58,67–69,106–108]) finally recognize
its fundamental role also in Continuum Mechanics. Actually, the Principle of Virtual Powers (which can
be regarded as a generalization of the Principle of Least Action, also when this last principle takes the
form chosen by Hamilton and Rayleigh) has always been considered the most suitable conceptual basis
for Continuum Mechanics: indeed, this point of view, which maybe can be tracked up to Lagrange in his
studies of fluid mechanics, has been used systematically in the famous works of E. and F. Cosserat and
developed by Mindlin, Green, Rivlin, Toupin, Germain, and many others (see references). A comprehen-
sive study of this subject can be found, in particular, in a recent book, see [11]. More detailed historical
studies would be required to describe how and why the importance of the Principle of Virtual Works
has been underestimated for long periods in the literature: the reader will find some very interesting
considerations in [8,36,88].

In this paper, it has been espoused the D’Alembertian view of mechanics as explicitly stated in the
foreword of the Traité de Dynamique (1768)

La certitude des Mathématiques est un avantage que ces Sciences doivent principalement à la
simplicité de leur objet. [. . . ..] les notions les plus abstraites, celles que le commun des hommes
regarde comme les plus inaccessibles, sont souvent celles qui portent avec elles une plus grande
lumiere: [. . . ..]
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pour traiter suivant la meilleure Méthode possible [. . . ] quelque Science que ce puisse être
il est nécessaire [. . . ] d’envisager, de la maniere la plus abstraite et la plus simple qu’il se puisse,
l’objet particulier de cette Science; de ne rien supposer, ne rien admettre dans cet objet, que
les propriétés que la Science même qu’on traite y suppose.

Delà résultent deux avantages: les principes reçoivent toute la clarté dont ils sont suscep-
tibles : ils se trouvent d’ailleurs réduits au plus petit nombre possible [. . . ]

puisque l’objet d’une Science étant nécessairement déterminé, les principes en sont d’au-
tant plus féconds, qu’ils sont en plus petit nombre. [. . . ]

La Méchanique surtout, est celle qu’il paroit qu’on a négligée le plus à cet égard: aussi la
plûpart de ses principes, ou obscurs par eux-mêmes, ou énoncés et démontrés d’une maniere
obscure, ont-ils donné lieu à plusieurs questions épineuses. [. . . ]

Je me suis proposé [. . . ] de reculer les limites de la Méchanique et d’en applanir l’abord
[. . . ] non seulement de déduire les principes de la Méchanique des notions les plus claires, mais
de les appliquer aussi à de nouveaux usages; de faire voir tout à la fois, et l’inutilité de plusieurs
principes qu’on avoit employés jusqu’ici dans la Méchanique et l’avantage qu’on peut tirer de
la combinaison des autres pour le progrès de cette Science; en un mot, d’étendre les principes
en les réduisant.

As clearly stated already in his works by Germain, the Principle of Virtual Works supplies the right
tool for extending the Cauchy–Navier (see e.g., [10]) theory of Continuous Bodies.

Actually, the Cauchy–Navier format to Continuum Mechanics is not able to encompass the so-called
Generalized or Micro-Structured Continua (see e.g., [43–49,55,76,81,87,103,120,121]). These Continua
are more and more attracting the interest of many researchers as they seem suitable to supply an effi-
cient description of many phenomena, occurring in continuous systems in which at a “micro” lever are
present some sharp variations of physical properties (see e.g.,[2,105]). Also many efforts are directed
toward more or less mathematically rigorous homogenization procedures leading to continua which at
a “macroscopic” level behave as higher gradient or Cosserat Continua (see e.g., [9,12,13,41,42,74,75,
79,101,102,104,117,124,125,128]). Homogenization is also involved in the analysis of dissipation effects
in many particle systems in the attempt of describing a finite dimensional system (in which length and
time scales may be relevant) through a continuum approximation by the Langevin equation in the con-
text of Brownian motion (see e.g., [15,18,20]). In these papers, a perturbation analysis is proposed, and
a procedure for homogenization in stochastic system is found, based on the use of a special family of
probability distributions. The resulting continuum models involve constitutive equations, for both the
elastic and dissipative behavior, in which memory effects appear: it is an open problem how the treat-
ment developed in the present paper could be adapted to encompass contact interactions which arise in
these more complicated models. Based on the original ideas of Lagrange himself, the principles of power
balance have received attention also in dynamics, namely in vibrations and acoustics. In this field, some
authors (see e.g., [16,17]) attempted to write a self-contained set of equations to describe power migration
through a continuum medium: this situation resembles the one in which Dunn and Serrin [39,40] found
themselves in the context of “incomplete” second gradient theories. In the authors’ opinion, (generaliz-
ing what done in [33]) higher gradient theories may complete the cited attempt or, in general, supply
a regularized model when non-convex energy functions need to be introduced (as in Cahn–Hilliard and
Korteweg fluids, or in many other physical situations, see e.g., [21] or[50]). Finally, the power balance
equations can be also approached in the context of uncertainties in the constitutive relationships, where
some randomness affects the physical parameters of the continuum (see e.g., [28]). In this case, higher
order gradients would be related to the introduction of some statistical average and ergodic assumption.
Finally, higher order gradient theories are needed when “boundary layer” phenomena must be described:
when considering impact phenomena (see e.g., [4,19,72] and [6]) in general, some “ad hoc” assumptions
are imposed, especially when choosing boundary conditions. More detailed models for impact between
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solids or between solids and fluids, involving some space-time length scales, may cure some of the “sin-
gularities” that are present in many models presented in the literature: in particular, one could conceive
to describe the phenomena of water spray formation or turbulence (see, respectively, [72] with references
there cited or [56]) by means of suitable “contact edge” forces.

In the present paper, we show how the Principle of Virtual Powers, as formulated already by E. and F.
Cosserat (and in their textbooks by Germain and Salençon), allows us to generalize Cauchy representation
formulas for contact interactions to the case of Nth gradient continua.

For this deduction, it is crucial to consider the Principle of Virtual Powers valid for every sub-body
of considered continuous body, as done in all literature based on D’Alembert and Lagrange works (see
e.g.,[14,22,23,26,27,59–66,89–96,109,122,123]). It has to be remarked that, because of a somehow re-
stricted version of this Principle as formulated in [127, pp. 595–600], in many papers, its correct formu-
lation has been rediscovered several times.

We will also show that in Nth gradient continua contact interactions:
(i) depend in a precise way on the shape of Cauchy Cuts; these cuts will be assumed to be constituted

by a finite number of regular faces (orientable and for which all needed gradients of the unit surface
normal field exist), a finite number of regular edges (i.e., curves on which are concurring two of the
previously introduced faces and for which the Frénet basis and all its needed derivatives exist), and
a finite number of wedges (i.e., points in which a finite number of edges are concurring).

(ii) must include edge (i.e., concentrated on curves) and wedge (i.e., concentrated on points) interac-
tions, so that one cannot assume (as done in [98–100]) that these interactions are represented in
terms of surface integrals, and

(iii) cannot reduce simply to forces: indeed (differently from what assumed by [97]), the concept of K-
forces (generalizing similar concepts introduced by Rivlin, Mindlin, Green and Germain) is needed.

Indeed, in this paper, we prove that “balance of force” is not a suitable postulate for developing the
theory of Nth gradient continua.

2. D’Alembert principle for Nth gradient continua

In this section, we start by considering the power of internal interactions and, by means of iterated inte-
grations by parts, we deduce the form of external interactions that can be sustained by Nth gradient
Continua.

2.1. Power expended by internal or external interactions

Once we fix a sub-body D (i.e., a subset of material particles occupying—in a given configuration—an
admissible domain; this last concept is precisely introduced in Appendix A) of a given continuous body
B and consider the set A of all admissible velocity fields for D, then it is natural to admit that in A are
included all “test functions” (i.e., infinitely differentiable functions having compact support). In other
words, we assume that D ⊂ A where D denotes the set of all test functions. It is also natural (as done,
for example, in [110] or [59–61]) to assume that the power expended by internal or external (with respect
to D) interactions is a linear and continuous functional when defined in the set of test functions (with
respect to Fréchet topology). In other words, we accept the following

Postulate 1. The powers expended by all the interactions relative to a sub-body are distributions (in the
sense of Schwartz) concentrated on D, where we denote by D the topological closure of the set D.

It is clear that, once the previous postulate is accepted, theorems and definitions of the theory of
distributions, due to Schwartz (see [111]), become really relevant in Continuum Mechanics. In particular,
we know that (i) every distribution having compact support K can be represented as the sum of a finite
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number of derivatives of measures all having their support included in K, (ii) a distribution is said to
have order smaller than or equal to k if one can represent it as the sum of derivatives with order smaller
than or equal to k of measures, and (iii) every distribution having support included in a regular embedded
submanifold M can be uniquely decomposed as a finite sum of transversal derivatives of extensions of
distributions defined on M .

Taking into account the aforementioned definitions and theorems, the postulate on the structure of
powers can be reformulated in the following way: for every sub-body D, the powers of both internal and
external interactions take the form

P(D,V ) =
∫

D

(∇NDV ) | dTD, ∀V ∈ D (1)

where ND is an integer, dTD is a tensor valued measure, and the symbol | stands for the total saturation
of contravariant and covariant indices.

2.2. Representations of distributions which are Nth order derivatives of absolutely continuous
measures concentrated on compact piece-with-boundary smooth manifolds embedded in R

3

We aim to study some properties of a distribution L which has support concentrated on a compact piece-
with-boundary smooth manifold M (see Appendix A or [71]) embedded in R

3 and can be represented as
follows

L(V ) =
∫

M

T | ∇NV dHM (2)

where T is a N -times contravariant tensor field of class CN defined on M and dHM stands for the
Hausdorff measure relative to M .

We introduce the projector fields P and Q, respectively, on the tangent and normal subspaces to M
(see the Appendix A) and, for any totally symmetric tensor field T of order N defined on M , the following
“projected” fields

T j1...jN

⊥ : = T i1i2...iN Qj1
i1

Qj2
i2

. . . QjN

iN
. (3)

P(T )j1...jN : = Sym
j1...jN−1

(
N−1∑
α=0

Cα
NT i1i2...iN Qj1

i1
. . . Qjα

iα
P

jα+1
iα+1

. . . P
jN−1
iN−1

)
P jN

iN
(4)

where Cα
N denote the binomial coefficients. We remark that, from the trivial identity T j1...jN =

T i1...iN (P j1
i1

+ Qj1
i1

) . . . (P jN

iN
+ QjN

iN
), we can easily derive the equation

Sym
j1...jN

P(T )j1...jN = (T − T⊥)j1...jN . (5)

Let us now consider a compact piece-with-boundary smooth manifold M with boundary ∂M . Let T
be a C1 totally symmetric tensor field of order N defined in some neighborhood of M .

Definition 2. We denote by divM the tangential divergence operator on M which associates to any N th
order tensor field T (having components T i1i2...iN ), the tensor field of order N − 1,divMT (having the
components

(
T j1...jN−1l

)
,jN

P jN

l ). We also introduce the composed operator div�M by setting:

div�M (T ) := divM (P(T )) (6)

As usual, we define the iterates divα
�M of the previous operator in a recursive way by setting

div0
�MT := T and divα

�M (T ) := div�M (divα−1
�M (T )) (7)
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Lemma 3. If T is a totally symmetric N th order tensor, then the following equality holds
∫

M

T | ∇NV =
∫

M

T⊥ | (∇NV
)
⊥ −

∫

M

div�M (T ) | ∇N−1V +
∫

∂M

P(T ) · ν | ∇N−1V (8)

where the dot product stands for the saturation of closest contravariant and covariant indices and the
vector ν denotes the tangent vector to M , outer pointing unit normal to the boundary ∂M . In component
representation, formula (8) reads

∫

M

T i1i2...iN V,i1i2...iN
=
∫

M

T i1i2...iN Qj1
i1

Qj2
i2

. . . QjN

iN
V,j1j2...jN

−
∫

M

((
P(T )j1...jN

)
,l P

l
jN

)
V,j1j2...jN−1

+
∫

∂M

P(T )j1...jN V,j1j2...jN−1 νjN
(9)

Proof. Using the fact that P(T ) and (T − T⊥) have the same symmetric part, we can start decomposing
the integral

∫

M

T i1i2...iN V,i1i2...iN
=
∫

M

T i1...iN Qj1
i1

. . . QjN

iN
V,j1...jN

+
∫

M

P(T )j1...jN V,j1...jN
.

We then note that P(T )j1...jN−1jN = P(T )j1...jN−1lP jN

l and apply the Divergence Theorem (see
Appendix B) on M :

∫

M

T i1...iN V,i1...iN
=
∫

M

T i1...iN Qj1
i1

. . . QjN

iN
V,j1j2...jN

+
∫

M

P(T )j1...jN−1lV,j1...jN−1jN
P jN

l

=
∫

M

T j1...jN

⊥ V,j1...jN
−
∫

M

(
P(T )j1...jN−1l

)
,jN

P jN

l V,j1...jN−1

+
∫

M

(
P(T )j1...jN−1lV,j1...jN−1

)
,jN

P jN

l

=
∫

M

T j1...jN

⊥ V,j1...jN
−
∫

M

((
P(T )j1...jN−1l

)
,jN

P jN

l

)
V,j1j2...jN−1

+
∫

∂M

P(T )j1...jN−1lV,j1j2...jN−1 P jN

l νjN

which concludes the proof. �

Now we can make explicit the announced unique representation of the distribution (2) in terms of
transversal derivatives of distributions concentrated on the boundary of M . Indeed, applying exactly N
times Lemma 3, we can decompose any regular distribution of order N on M in a transverse regular
distribution of the same order on M and a distribution of order N − 1 on ∂M :
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Lemma 4. Let T be a CN totally symmetric tensor field of order N defined in some neighborhood of M .
The following equality holds

∫

M

T | ∇NV =
N∑

J=0

(−1)N−J

∫

M

(
divN−J

�M (T )
)

| (∇JV
)
⊥

+
N−1∑
L=0

(−1)N−1−L

∫

∂M

P(divN−1−L
�M (T )) · ν | ∇LV. (10)

Proof. We proceed by induction. When N = 1 the statement is a particular case of Lemma 3. In the
inductive step, we start assuming that (10) holds for any tensor of order N . Then we consider a tensor
of order N + 1. By applying Lemma 3 we get∫

M

T | ∇N+1V =
∫

M

T | (∇N+1V
)
⊥ −

∫

M

div�MT | ∇NV +
∫

∂M

P(T ) · ν | ∇NV

applying the induction assumption to the second term of this expression (where T is replaced by div�MT ),
we get

∫

M

T | ∇N+1V =
∫

M

T | (∇N+1V
)
⊥ −

N∑
J=0

(−1)N−J

∫

M

(
divN−J

�M (div�MT )
)

| (∇JV
)
⊥

−
N−1∑
L=0

(−1)N−1−L

∫

∂M

P(divN−1−L
�M (div�MT )) · ν | ∇LV +

∫

∂M

P(T ) · ν | ∇NV.

The proof is completed by simply reorganizing the terms. �

3. Principle of Virtual Powers applied to Nth gradient continua

The external world can interact with a continuous body B. Moreover, its sub-bodies interact: they exert
on each other internal interactions. We underline that, also when considering a given sub-body D of B,
a similar distinction can be done and that some interactions which must be regarded as internal when
referring to B actually become external when referring to D. We call “internal” and “external” the power
expended on any admissible velocity, respectively, by internal and external interactions.

Definition 5. A continuous body B is said to be a N th gradient continuum if there exists a family of
Λ−times contravariant tensor fields TΛ of class CΛ(B), such that for every sub-body D ⊂ B,

P int(D,V ) =
N∑

Λ=0

∫

D

TΛ | ∇ΛV dL. (11)

The previous definition was put forward by Green and Rivlin who called the tensors TΛ the “Λth
order stresses”. We emphasize that this definition contains strong assumptions : the dependence of the
internal power with respect to the sub-body is described by a unique measure (the density of internal
power) which is absolutely continuous with respect to the Lebesgue measure dL with suitably smooth
density.

Note that, in general, because of (1), the fields TΛ could be any measures (distributions of order zero).
The case of such less regular fields deserves delicate mathematical treatment as done, for example, in
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[119] and is of great mechanical interest. For instance, a power of the form

P int(D,V ) =
∫

D

∇V | TdH2
|S (12)

where TdH2
|S is a tensorial measure concentrated on the surface S, can describe an interface with surface

tension, an elastic plate or an elastic shell. Such example presents some features which, at first insight,
resemble certain properties of contact interactions for smooth stresses that we obtain in the present
paper. We attract the attention of the reader to this point in order to prevent a frequent and heavy
confusion: indeed, in the example given by Eq. (12), the “stress concentration” on a surface balances the
concentration of external forces along the lines constituting S ∩ ∂D. This phenomenon should not be
confused with the concentration of external forces obtained in the following formula (14) on any edge of
∂D. The first case corresponds to physical concentration of energy (like surface tension or deformation
energy of shells), while the second one is related to the geometrical singularity of a Cauchy Cut.

Stating that a continuum is a Nth gradient continuum is fundamentally a “constitutive” assumption.
By means of it, one specifies the order and the smoothness of internal interactions that are considered
as “possible” inside the body. The constitutive theory will be completed only when the dependence of
the tensors TΛ on suitably introduced measures of deformation is specified. For instance, in the Cauchy
continuum models which are usually considered, the fundamental constitutive assumption is N = 1 and
T1, corresponding to the Cauchy stress tensor, needs to be specified by a further constitutive equation in
terms of Green–Saint-Venant deformation tensor.

We are now ready to add another postulate

Postulate 6. Principle of Virtual Powers or Power Balance For every sub-body D of a given body B and
for every test velocity field V , the following equality holds

P int(D,V ) = Pext(D,V ). (13)

Note that in this formulation, inertial forces are included in external interactions. For a presentation
of the ideas inspiring this axiom, we refer to [60,61,110] or to the celebrated works [26] and [27]. In these
works, it is shown that this principle is a generalization of Newton second law, which is more suitable
when dealing with more general systems than finite systems of material points.

In the present work, we will limit ourselves to consider the following class of external interactions:

Postulate 7. Constitutive assumptions for external interactions
The external interactions exerted on some sub-body D are described by a distribution Pext made of

two parts. The first part corresponds to long range external interactions exerted on D. We assume it to be
representable by a distribution which is an integrable function with respect to the Lebesgue measure. The
inertial power, which we have included in Pext, is of this type. The second part corresponds to contact
actions. We assume it to be a distribution concentrated on the boundary of D.

4. Contact actions in Nth order strain-gradient continua: Nth order forces and stresses

A consequence of the Principle of Virtual Powers is that the external contact interactions which a Nth
gradient continuum can “sustain” must belong to a particular subset of the set of distributions concen-
trated on the boundary of B. The sequel of this paper is now devoted to the explicit determination of this
particular class. The arguments we will develop follow the same spirit as in e.g [52,59–66,89–96,113,114]
and many other papers.

Lemma 8. Let D be a sub-boby of a N th gradient continuum B. Let us assume that the topological bound-
ary of D is a compact piece-with- boundary smooth manifolds, then the power of contact interactions are
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made of three parts: (i) a part having support on the faces SD of the boundary of D and absolutely con-
tinuous with respect to the Hausdorff H2 measure. It is a transverse distribution of order smaller or equal
to N − 1, (ii) a part having support on the edges ED of D and absolutely continuous with respect to the
H1 measure. It is a transverse distribution of order smaller or equal to N − 2, (iii) a part having support
on the wedges WD of D. It is a discrete distribution of order smaller or equal to N − 3. In formulas:1

Pext(D,V ) =
∫

D
EV dH3 +

N−1∑
Δ=0

∫

SD

FΔ | (∇ΔV
)
⊥ dH2

+
N−2∑
Δ=0

∫

ED

GΔ | (∇ΔV
)
⊥ dH1 +

N−3∑
Δ=0

∫

WD

HΔ | ∇ΔV dH0 (14)

Remark 9. The symbol ⊥ in the previous formula and in the whole rest of the paper has a contextual
sense: it means the transverse part of a tensor relatively to the relevant manifold.

Proof. This result is a consequence of the Principle given in Eq. (13) and of the constitutive assumption
of the Postulate 7. We first apply Lemma 4 to the manifold D and the distribution P int(D,V ), noticing
that the only transverse distributions in D are those of order zero (the normal space at every point in D
being reduced to the null space!). We thus obtain a representation for P int(D,V ) as the sum of a smooth
zero-order distribution on D and a (N − 1)th order distribution concentrated on ∂D. Then we apply
Lemma 4 to this last distribution and to each face which constitutes ∂D. Such distribution is split in a
(N − 1)th order transversal distribution on each face included in SD and a (N − 2)th order distribution
on each edge included in ED. Finally, we apply Lemma 4 to this (N − 2)th order distribution and to each
one-dimensional manifold with boundary included in ED. Such distribution is split in a (N − 2)th order
transversal distribution on ED and a (N − 3)th order distribution on the wedges included in WD (note
that any distribution on wedges is automatically transversal). �

The procedure used in this proof actually enables to get a complete representation of contact interac-
tions (E,FΔ, GΔ,HΔ) in terms of the stress tensors TΛ. We have decided to postpone this representation
since its computation needs the preliminary introduction of a complex notation. We call “contact Δ−
forces” per unit surface, per unit line or concentrated on points, the fields FΔ, GΔ and HΔ following
Green and Rivlin or Germain who used this nomenclature only in the case of surface forces.

Let us now explicit the contact Δ−forces FΔ, GΔ and HΔ in terms of the Λ-order stresses. We start
again from the formula (11)

P int(D,V ) =
N∑

Λ=0

∫

D

TΛ | ∇ΛV dL

and apply Lemma 4 to the manifold D and to every integral in the previous sum. When M = D, the
projection operator P is simply the identity, the operator div�D is simply the divergence operator div,
and the outer normal ν is the outer normal n to the surface SD so that the right hand side of last formula

1 It is needed here to recall the difference between ∂D, ∂∂D and ∂∂∂D and their support. While ∂D is nothing else
than SD oriented by the external normal to D, the situation is more intricate when considering ∂∂D and ∂∂∂D. Indeed an
edge in ED coincides with the borders of two regular parts of SD each one with its own external tangent normal, i.e. a unit
vector tangent to the regular part of SD and normal to the edge. As far as a wedge is concerned many edges can concur
at this point defining there as many tangent external vectors, each one tangent to a concurring curve. These definitions are
those used generally in the theory of integration of differential forms defined on differential manifolds [for more details see,
for example, Arnold (1979)].
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becomes
N∑

Λ=0

⎛
⎝
∫

D

(−1)Λ(divΛTΛ)V +
Λ−1∑
L=0

∫

∂D

(−1)Λ−1−L(divΛ−1−LTΛ) · n | ∇LV

⎞
⎠

or, reordering,
∫

D

(
N∑

Λ=0

(−1)ΛdivΛTΛ

)
V +

N−1∑
L=0

∫

∂D

(
N∑

Λ=L+1

(−1)Λ−1−L(divΛ−1−LTΛ) · n

)
|∇LV (15)

This makes natural the introduction of the following notation: we call Bulk Internal Force the quantity

F (D, 0) :=
N∑

Λ=0

(−1)Λ divΛ(TΛ) (16)

This quantity depends linearly on the family of stresses {TΛ}. When needed we will use the notation
F(D, {TΛ} , 0) := F (D, 0) to recall this dependence. The zero appearing in formula (16) refers to the
order of the associated distribution. The dependence with respect to D is here irrelevant but necessary
for the coherence with further notation. In the same way we denote T (D,Λ) := TΛ. We also introduce
the quantity

T (∂D,L) :=
N∑

Λ=L+1

(−1)Λ−1−L(divΛ−1−LTΛ) · n (17)

The expression of internal power is then meaningfully simplified:

P int(D,V ) =
N∑

Λ=0

∫
D

T (D,Λ) | ∇ΛV

=
∫

D

F (D, 0)V +
N−1∑
L=0

∫

∂D

T (∂D,L) | ∇LV (18)

We now apply Lemma 4 to any of the regular parts of ∂D in order to treat surface integrals:2

∫

∂D

T (∂D,L) | ∇LV =
L∑

J=0

(−1)L−J

∫

∂D

(
(div�∂D)L−J

T (∂D,L)
)

| (∇JV
)
⊥∂D

+
L−1∑
J=0

(−1)L−1−J

∫

∂∂D

P∂D

((
(div�∂D)L−1−JT (∂D,L)

) · ν
) | ∇JV

We get for the sum of all surface integrals in (18):
N−1∑
J=1

∫

∂D

(
N−1∑
L=0

(−1)L−J (div�∂D)L−J
T (∂D,L)

)
· (∇JV

)
⊥∂D

+
N−2∑
J=0

∫

∂∂D

(
N−1∑

L=J+1

(−1)L−1−J
P∂D

(
(div�∂D)L−1−J

T (∂D,L)
)

· ν

)
· ∇JV

2 The reader is warned that we use Cartan notation [7] here (see Appendix A): each integral along an edge corresponds
to two integrals coming from the integration by parts on the two faces concurring there. For each of these integrals, the
unit tangent normal ν and the projector P∂D are well defined.
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We continue by introducing new simplifying notation: for any J ≥ 0, we introduce the surface density of
(J + 1)-forces by setting3

F (∂D, 0) :=
N−1∑
L=0

(−1)L (div�∂D)L
T (∂D,L) (19)

and, for any J > 0,

F (∂D, J) :=

(
N−1∑
L=J

(−1)L−J (div�∂D)L−J
T (∂D,L)

)

⊥∂D

. (20)

Clearly, all these surface densities depend linearly on the family of stresses {TΛ} and, when needed, we
recall this dependence by using the notation F(∂D, {TΛ} , J) := F (∂D, J). We also define the quantities

T (∂∂D, J) :=
N−1∑

L=J+1

(−1)L−1−J
P∂D((div�∂D)L−1−J

T (∂D,L)) · ν (21)

Then Eq. (18) becomes:

P int(D,V ) =
∫

D

F (D, 0)V +
N−1∑
L=0

∫

∂D

F (∂D,L) | (∇LV
)
⊥∂D

+
N−2∑
L=0

∫

∂∂D

T (∂∂D,L) | ∇LV (22)

We must now proceed by applying Lemma 4 to the line integrals in this last formula and to each regular
part of ∂∂D. Introducing the projection operator P∂∂D relative to every regular curve composing ∂∂D,
and the vector t∂∂D denoting the tangent vector of the generic edge concurring in the appropriate wedge,
the last term in Eq. (22) becomes

N−2∑
J=0

∫

∂∂D

(
N−2∑
L=J

(−1)L−J (div�∂∂D)L−J
T (∂∂D,L)

)
| (∇JV

)
⊥δδD

+

+
N−3∑
H=0

∫

∂∂∂D

(
N−2∑

L=H+1

(−1)L−1−H
P∂∂D((div�∂∂D)L−1−H

T (∂∂D,L)) · t∂∂D

)
| ∇HV (23)

Introducing once more some simplified notation, we define, for J ≥ 0 and H ≥ 0 the line densities of
(J + 1)− forces F (∂∂D, J) and the (H + 1)-forces concentrated on wedges by setting

F (∂∂D, 0) :=
N−2∑
L=0

(−1)L (div�∂∂D)L
T (∂∂D,L) (24)

3 The introduced vector quantity F (∂D, 0) generalizes Cauchy “traction” vector: it is expending power on (virtual)
velocities. In Cauchy Continua surface density of force F (∂D, 0) coincides with the only non-vanishing surface stress
T (∂D, 0). In Second Gradient Continua (as established by Green and Rivlin, Mindlin, Germain) the following equality
holds: F (∂D, 0) = T (∂D, 0) − (div∂DPδD) T (∂D, 1).
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and, for J > 0 and H ≥ 0

F (∂∂D, J) :=

(
N−2∑
L=J

(−1)L−J (div�∂∂D)L−J
T (∂∂D,L)

)

⊥δδD

(25)

T (∂∂∂D,H) :=
N−2∑

L=H+1

(−1)L−1−H
P∂∂D((div�∂∂D)L−1−H

T (∂∂D,L)) · t∂∂D (26)

Remark that, as in every wedge P∂∂∂D = 0, then it is necessary to define F (∂∂∂D,H) := T (∂∂∂D,H).
Also the newly introduced quantities depend linearly on the family of stresses {TΛ}. When needed we
will recall this dependence by using the notation F(∂∂D, {TΛ} , J) := F (∂∂D, J); F(∂∂∂D, {TΛ} , J) :=
F (∂∂∂D, J). By means of (24), (25) and (26) Eq. (23) becomes

N−2∑
L=0

∫

∂∂D

T (∂∂D,L) | ∇LV =
N−2∑
J=0

∫

∂∂D

F (∂∂D, J) | (∇JV
)
⊥δδD

+
N−3∑
J=0

∫

∂∂∂D

F (∂∂∂D, J) | ∇JV

The process of integration by parts is ended. We have obtained the searched representation formula for
internal power

P int(D,V ) =
∫

D

F (D, 0)V +
N−1∑
J=0

∫

∂D

F (∂D, J) · (∇JV
)
⊥δD

+
N−2∑
J=0

∫

∂∂D

F (∂∂D, J) · (∇JV
)
⊥δδD

+
N−3∑
J=0

∫

∂∂∂D

F (∂∂∂D, J) · ∇JV

The identification between P int and Pext imposed be the Principle 13, the uniqueness of the representa-
tion of a distribution in terms of transverse distributions and the just completed calculations lead to the
following theorem:

Theorem 10. Representation theorem for contact interactions for Nth gradient continua In a N th gra-
dient continuum as defined in Definition 5, the power of external interactions must take the form (14)
where the external interactions (E,FJ , GJ ,HJ ) are linearly related to the internal stresses TΛ by

E = F(D, {TΛ} , 0); FJ = F(∂D, {TΛ} , J); (27)

GJ = F(∂∂D, {TΛ} , J); HJ = F(∂∂∂D, {TΛ} , J) (28)

and F(D, {TΛ} , 0),F(∂D, {TΛ} , J),F(∂∂D, {TΛ} , J),F(∂∂∂D, {TΛ} , J) are given in terms of stresses
through the sequence of Definitions (16), (17), (19), (20), (21), (24), (25), (26).

Remark 11. For the highest order forces, the representation formulas are simple. Indeed, the tensor TN

alone determines the surface N −1 forces, the edge N −2 forces, and the wedge N −3 forces as established
by means of the following relationships:

F(∂D, {TΛ} , N − 1) = (TN · n)⊥∂D (29)
F(∂∂D, {TΛ} , N − 2) = (P∂D(TN · n) · ν)⊥∂∂D (30)

F(∂∂∂D, {TΛ} , N − 3) = (P∂∂D (P∂D(TN · n)) · ν)) · t∂∂D) (31)



1130 F. dell’Isola et al. ZAMP

5. Some final considerations about obtained results

In this paper, we formulate a set of postulates inspired by the D’Alembertian and Lagrangian vision
of Mechanics (suitably adapted to Continuum Mechanics4 as envisaged already by E. and F. Cosserat,
and, among many others, by P. Germain). The just proven representation Theorem 10 completely solves
the problem of determining the dependence of contact interactions on the shape of Cauchy Cuts in Nth
gradient continua for the class of Cuts specified in the Appendix A. We want to underline the relevance
of some of the obtained results by commenting them in the following subsections.

5.1. Reconsidering so-called “Cauchy Postulate”

From Eqs. (27) and (28), it is evident the very particular nature of so-called “Cauchy Postulate”. Many
authors had considered Cauchy assumptions about contact interactions as “very” fundamental ones. So
fundamental that they refrain from abandoning them and their consequences: most likely it is for this
reason that these assumptions are called a “Postulate”. They can be resumed as follows: contact interac-
tions are simply represented as surface densities of force, and these force fields locally depend only on the
unit normal to Cauchy Cuts. The apparently very general Theorem due to [98], (see e.g., also [126]) more
deeply rooted the belief that such a Postulate was general enough to encompass all Continuum Mechan-
ics. Actually, as already proven by Green and Rivlin (and clarified by Germain), this is not the case:
Noll Theorem assumes that contact interactions concentrated on Cauchy Cuts are absolutely continuous
with respect to surface Hausdorff measure, and this property is not verified (see [62]) already by second
gradient continua, when Cauchy Cuts include edges (i.e., curves on which the surface normal jumps).

Actually we prove in this paper that the contact force per unit surface at any regular part of a Cauchy
cut (what we called face, in the Appendix A) in general does not depend only on the orientation of such
surface through its normal n. Indeed in Nth gradient continua, such contact force in general depends on
the geometry of Cauchy cut as it depends on the gradients of n up to ∇N−1n.

Moreover, contact forces arise on edges and wedges,while K-forces are present on faces, edges, and
wedges of Cauchy Cuts (see the representation Theorem in the previous section).

5.2. The concept of Shape of “piece-wise regular” Cauchy Cuts

Note that Theorem 10, and in particular Eq. (28)1, imply that line contact forces depend in general on
the geometry of the curve but also on the geometry of all regular surfaces concurring on the considered
edge. In the same way, concentrated interactions that are present at wedges depend on the geometry of
edges and faces concurring at this point.

It is clear that the concept of shape of Cauchy Cuts, as introduced, for example, in [32,33] and in [34],
plays a relevant role in the present context.

The results presented in this paper will be generalized, in a forthcoming one, to more general Cauchy
Cuts, in which edges where Kth order gradients of the unit normal field may be discontinuous, or where
wedges are present at which there are not concurring edges.

More difficult seems the generalization to more singular Cauchy Cuts, although the results of [37,38,
85,86,112,115,116] seem to open a possibility in this direction.

4 Already Lagrange, in his celebrated and fundamental textbook “Mécanique Analytique” [78], has started this flow of
thought. Indeed, one can read at page 195 that the principle of virtual velocities (using Lagrangian nomenclature for the
principle of virtual works) must hold for “chacun des corps du systeme proposé” (every body of the considered system).
Only two lines later, on the same page, Lagrange deduces the integral formulation of the principle of virtual works valid for
“tous les corps du systeme” (all bodies of the system), integral formulation which is the only one considered in [127].
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5.3. Cauchy approach versus D’Alembert approach

In [35], it is discussed an alternative approach to the problem solved here. Indeed, instead of starting from
a postulated form for internal powers, one could start from a suitable postulate on contact external pow-
ers. For second gradient continua, this alternative approach, in which the celebrated Cauchy tetrahedron
argument is generalized, has been exploited in [32,33].

Although the two approaches appear to be completely equivalent, the approach “à la Cauchy” is con-
sidered more attractive in [127], and consequently second gradient theories have been criticized as they
were not originally based on this paradigm.

In a forthcoming paper, the aforementioned approach “à la Cauchy” for Nth gradient continua will
be presented with some simplifications in the already published proofs: in this way hopefully those who
prefer such an approach to Continuum Mechanics will not feel uneasy with Nth gradient Continua.

5.4. Few considerations about the applicability range of Nth gradient theories

Continuum Mechanics, if one believes in the atomistic nature of matter, always supplies approximated
models for physical systems, in which their “fundamental” discrete nature may be somehow neglected.
Actually, Navier obtained the first version of Cauchy continuum theory by means of an average procedure
based on an “atomistic” model. Indeed, Cauchy continuum theory can be successfully applied to describe,
at a macroscopic level, the behavior of a mechanical system only if it can be considered homogeneous at
the observation scale and if no microscopic characteristic length scale can influence its overall macroscopic
behavior. In every circumstance in which one or more of these length scales are relevant, and in partic-
ular when boundary layer phenomena cannot be neglected, then one can keep using continuum theories
only if he introduces their more general version treated in the present paper. In the literature, there
are now many particular physical phenomena described in this spirit (see e.g., [9,12,13,42–49,55,74–
76,79,81,87,101–103,117,120,121,124,125,128]). Here, simply for the particular taste of the authors, it
is underlined the possibility of introducing Nth order models for describing some bio-mechanical phe-
nomena [70,73,80,82,132] or those damage phenomena occurring in crack formation and growth (see e.g.,
[3,5,24,25,54,83,129,130]).

Appendix A. Gaussian geometry of piecewise regular surfaces in E3

The family of sub-bodies that we will consider in the Principle of Virtual Powers will be open subsets of
C∗ (i.e. the reference configuration of considered body) with a topological boundary which is a piecewise
regular surface, as defined in the following section. When regarded as embedded submanifolds, actually
the topological boundaries we consider are compact piece-with-boundary smooth manifolds (see [71]).
These surfaces represent a particular class of “shapes” as introduced in [32,33].

A.1. Piecewise regular surfaces embedded in E3.

In the present paper, we will use the following nomenclature (following the fundamental textbook [1]):

Definition 12. A surface S is a piecewise regular (orientable and rectifiable) surface embedded in E3when
there exist a finite set

{γi ⊂ S, i = 1, . . . K}
of C1 curves (called edges) and a finite set of points (called wedges)

{Wi ∈ S, i = 1, . . . , H}
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such that, once introduced the notation (which is reminiscent of the one usually encountered in the for-
mulation of Poincaré theorem for exterior forms)

Support(∂S) :=

(
K⋃

i=1

γi

)
(32)

Support(∂∂S) :=

(
H⋃

i=1

Wi

)
(33)

the conditions appearing in the following list are verified.

List of conditions

• for every p ∈ S−(∂S ∪ ∂∂S) (i.e. for every regular point belonging to S), there exists a neighbouhood
in S which is locally (C2−)diffeomorphic to R

2 : we call any such local diffeomorphism

r : R
2 → S − (∂S ∪ ∂∂S)

an internal chart of S, We assume that for every internal chart r the set r(R2) is a rectifiable surface;
• for every p ∈ S−(∂S ∪ ∂∂S), there exists a translation vector in E3 , denoted with the symbol n(p),

which is orthogonal to every tangent vector to S, (the field n(·) is assumed to be suitably smooth
in any internal chart of S).

• for every p ∈ ∂S − ∂∂S, there exist two diffeomorphisms (called also “border charts”)

r± : [0,∞[ × R → I± ⊂ S (34)

such that

r±(0, 0) = p; r±(0, R) = ∂S ∩ I± (35)

(∀y ∈ ]0,∞[ × R)
(
r± (y) ∈ S − (∂S ∪ ∂∂S)

)
(36)

and both the following limits exist

lim
x→(0,0)

n(r± (x)) := n±(p).

Therefore, every curve γi can be regarded as the border of two regular surfaces S± one on the side +
the other on the side − with respect to γi. We will denote the unit outward pointing normal vector
to γi in the tangent plane to S±, respectively, with the symbol ν±.

• for every curve γi (the length of which is denoted by li), there exists a global parametric C1 repre-
sentation ri

ri : s ∈ [0, li] �→ p ∈ S

such that ∥∥∥∥dri

ds

∥∥∥∥ = 1,
dri

ds
· n± = 0

We will assume that
dri

ds
× n± = ±ν±

• for every Wj ∈ ∂∂S, there exists at least one curve γi such that one of the two following conditions
holds

ri(0) = Wj or ri(li) = Wj .
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Roughly speaking, piecewise regular orientable and rectifiable surfaces, in the particular conventional
sense specified above, are surfaces where the normal vector is defined in all points except those belonging
to a finite set of wedges and to a finite set of regular curves (the edges of the surface). Along these curves,
a tangent vector is always defined together with both the normals of the two subsurfaces concurring on
the edge.

Definition 13. We call face of S every connected component of the set S − (∂S ∪ ∂∂S)

A.2. Local parametrizations for regular curves and surfaces. Local curvilinear coordinate systems
in E3 adapted to surfaces and surface edges

We start recalling some basic definitions from differential geometry (see e.g., [118])

Definition 14. A parametrization of a regular curve is a C1 one-to-one function r : ]a1, b1[ → E3 such
that

(∀p ∈ r (]a1, b1[))
(

t(p) :=
dr

dx1

(
r−1 (p)

) �= 0
)

The vector t(p) is the tangent vector to the curve in p.

Definition 15. At every point p of a regular curve γ, we can define the following projection operators

Pγ,p := t(p) ⊗ t(p); Qγ,p := n1(p) ⊗ n1(p) + n2(p) ⊗ n2(p)

where n1(p) and n2(p) form an independent set of vectors both orthogonal to t(p).When this will not cause
confusion, we will skip one or both the indices of the introduced projectors. Pγ,p will be called the projector
in the tangent bundle (or line) of γ at point p, while Qγ,pwill be called the projector in the orthogonal
bundle (or plane) of γ at point p.

Definition 16. A map

r :
(
x1, x2

) ∈ ]a1, b1[ × ]a2, b2[ ⊂ R
2 �→ r

(
x1, x2

) ∈ E3

is called a local parametrization for the regular surface S in the neighborhood of p if r is a C1 diffeomor-
phism between ]a1, b1[ × ]a2, b2[ and r (]a1, b1[ × ]a2, b2[) =: Ip such that

Ip ⊂ S; r−1(p) ∈ ]a1, b1[ × ]a2, b2[ (37)

Once a local parametrization for the regular surface S is introduced, then a set of coordinate curves
on S is established, together with a field of bases for the tangent planes to S.

We will consider in the following the fields of vectors induced by a local parametrization

(∀α ∈ {1, 2}) (∀q ∈ Ip)
(

aα(q) :=
∂r

∂xα

(
r−1 (q)

))

The couple {a1(q), a2(q)} is a basis of the tangent plane to S in the point q. The set of points

r
({

x1
}× ]a2, b2[

)
, r

(
]a1, b1[ × {x2

})
are called the coordinate x2 and x1 curves. Remark that the vectors aα are tangent to the coordinate xα

curves. The C1 normal (to S) unit vector field n can be calculated by the formula

n(q) =
a1(q) × a2(q)

‖a1(q) × a2(q)‖
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Definition 17. Let the couple {a1(p), a2(p)} denote an othonormal basis of the tangent plane to S in the
point p. At every point p of a regular surface S, we can define the projector operators

PS,p := a1(p) ⊗ a1(p) + a2(p) ⊗ a2(p); QS,p := n(p) ⊗ n(p). (38)

When this will not cause confusion, we will skip one or both the indices of the introduced projectors. PS,p

will be called the projector in the tangent bundle (or plane) of S at point p, while QS,pwill be called the
projector in the orthogonal bundle (or line) of S at point p.

Remark 18. Because of the previous definitions, regular curves and surfaces are respectively one-
dimensional and two-dimensional manifolds embedded in the three-dimensional Euclidean space.

The scalar fields

gαβ : q ∈ Ip �→ aα(q) · aβ(q)

represent the components of a tensor field which is called the Riemannian metric induced on S by the
inner product in E3.

Remark 19. A given regular curve or surface can be endowed with the structure of Riemannian manifold
simply using the inner product of the Euclidean space in which they are embedded. Indeed for any couple
v and w of vectors in their tangent bundle, one can calculate their inner product simply by regarding them
as vectors in E3.

Although in the Euclidean space E3 the Cartesian system of coordinates, using at every point the
same vector basis to represent displacement vectors, is in general sufficient, in the present context one
needs to introduce the following

Definition 20. Local curvilinear coordinate systems in E3. A map

ϕ :
(
x1, x2, x3

) ∈ ]a1, b1[ × ]a2, b2[ × ]a3, b3[ ⊂ R
3 �→ ϕ

(
x1, x2, x3

) ∈ E3

is called a local chart in E3 in the neighborhood Ip of p ∈ E3 determining a local curvilinear coordinate
system when it is a diffeomorphism between

]a1, b1[ × ]a2, b2[ × ]a3, b3[ and ϕ (]a1, b1[ × ]a2, b2[ × ]a3, b3[) =: Ip

A ith(i ∈ {1, 2, 3}) coordinate curve is obtained fixing in the function ϕ all arguments except the xi

variable, and the tangent vectors of such coordinate curves are denoted as follows

(∀q ∈ Ip)
(

ai(q) :=
∂ϕ

∂xi

(
ϕ−1 (q)

))

Obviously for every q ∈ Ip the set {ai(q), i ∈ {1, 2, 3}} is a basis of the vector space of translations in
E3.Therefore, the curvilinear coordinate system that has been introduced generates a field of bases in
all Ip.

Definition 21. In Ip we can introduce the following scalar fields

(∀q ∈ Ip) (gij(q) := ai(q) · aj(q))

which are the components, in considered curvilinear coordinate system, of the Riemann metric in the
Euclidean field E3.

Let us consider a piecewise regular surface: as we will see in what follows, it is possible to introduce
in the neighborhood of p charts (i.e. curvilinear coordinate systems) in the Euclidean space E3 which are
“adapted” to (i) the surface in the neighborhood of regular point p ∈ S − (∂S ∪ ∂∂S) (ii) to the edge of
the surface in the neighborhood of a point which is not a wedge.
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A.2.1. Local curvilinear coordinate system in E3 adapted to S in the neighborhood of a regular point.
The following Lemma is a consequence of the Inverse Function Theorem and is the basis of an important
part of Gaussian differential geometry (for a proof see, for example, [31,77]).

Lemma 22. Let r be a local parametrization of S in the neighborhood of the regular point p ∈ S−(∂S∪∂∂S).
For a suitably small positive ε the map ϕ defined by

ϕ :
(
x1, x2, x3

) ∈ ]a1, b1[ × ]a2, b2[ × ]−ε,+ε[ ⊂ R
3

�→ r
(
x1, x2

)
+ x3n

(
r−1

(
x1, x2

)) ∈ E3 (39)

actually is an invertible function and a diffeomorphism.

Definition 23. When the map ϕ considered in the previous Lemma is a diffeomorphism, then it is called
the chart adapted to S induced by the parametrization r.

When this will not be cause of confusion, we will admit an abuse of notation and we will use the sym-
bols n

(
x1, x2

)
, gαβ

(
x1, x2

)
, and aα

(
x1, x2

)
instead of the symbols n

(
r−1

(
x1, x2

))
, gαβ

(
r−1

(
x1, x2

))
,

and aα

(
r−1

(
x1, x2

))
. The same abuse of notation will be repeated for all the fields ai and gij not spec-

ifying the composition with the function ϕ−1. The class of charts we have now introduced was first
introduced by Gauss (see e.g., [118]). We are now able to extend in the neighborhood in E3 of a regular
point p ∈ S the fields of projectors in the tangent and in the orthogonal bundles.

Definition 24. Let us consider a chart ϕ adapted to the surface S in the neighborhood of a point p.
For every x3 ∈ ]−ε, ε[, we can consider the (regular) surface Sx3 which is defined by the following local
parametrization

rx3 := r + x3n.

On every surface Sx3 , it is easy to introduce the tangent and orthogonal projectors, which for x3 = 0
reduce to the projectors introduced already for S = S0.We will denote these fields of projectors, also when
defined in the opens set

ϕ (]a1, b1[ × ]a2, b2[ × ]−ε,+ε[) ⊂ E3

with the same symbols PS,p and QS,p.

A.2.2. Local curvilinear coordinate system inE3 adapted to an edge ofS in the neighborhood
of a point which is not a wedge
. Let r be a local parametrization of an edge γ of S in the neighborhood of a point p ∈ ∂S − ∂∂S. When
it is a diffeomorphism, we will call the maps ϕ± defined by

ϕ± :
(
x1, x2, x3

) ∈ ]a1, b1[ × ]−ε,+ε[ × ]−ε,+ε[ ⊂ R
3

�→ r
(
x1
)

+ x2n±(r−1
(
x1
)
) + x3ν± (r−1

(
x1
)) ∈ E3 (40)

a chart adapted to S at the considered edge as induced by the edge parametrization r on the side + or
− (respectively) depending on the consistent choice adopted. Adapting the argument used in the proof
of the Lemma of the previous subsection, and using the assumed regularity hypotheses about S and its
edges, it can be proven again that, when the value of ε is chosen to be positive and suitably small, ϕ±

actually are two diffeomorphisms and can be used as charts in E3.

Definition 25. Let us consider a regular point of the edge γ and a chart adapted to S at γ. For every(
x2, x3

) ∈ ]−ε,+ε[ × ]−ε,+ε[ we can consider the regular curves parametrized by the function

r±
x2,x3 := r + x2n± + x3ν±.

For each of these curves we can define the projection on the orthogonal and tangent bundles, thus obviously
extending in the neighborhood of γ the already introduced projection fields Pγ,p and Qγ,p.
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Appendix B. Gauss divergence theorem for embedded Riemannian manifolds

We choose a global orthonormal basis (ei, i = 1, 2, 3) for the vector field of displacements in E3. All tensor
fields, unless differently specified, will be represented by means of the components with respect this basis.
In this section, we consider an embedded Riemannian manifold M in E3. This manifold can be therefore
a regular curve or surface. Because we were able to construct the so-called Gaussian coordinate systems
adapted to considered manifolds, then in a whole neighborhood of these manifolds, it is possible to intro-
duce the projection operator fields P and Q. For reducing the complication of the calculation which we
will perform in what follows, we do not use directly the adapted curvilinear coordinates: instead, after
having established the existence of the fields P and Q in the neighborhood of M , we introduce a global
Cartesian coordinate system and represent all fields in it. This technical choice is exactly the same one
which allowed to Germain the generalization, for second gradient materials, of the results found by Green,
Rivlin, Toupin, and Mindlin.

It is easy to prove the following:

Lemma 26. If on each manifold M,P denotes the projection on the tangent bundle : we have

δj
i = P j

i + Qj
i , P j

i P k
j = P k

i ,

Qj
iQ

k
j = Qk

i , P j
i Qk

j = 0. (41)

The unit external normal to M on its border is denoted ν; it belongs to the tangent space to M .

Using these notations, the divergence theorem reads (see e.g., [118])

Theorem 27. For any vector field W defined in the neighborhood of M∫

M

(P i
jW

j),kP k
i =

∫

∂M

W iP k
i νk (42)

This theorem together with relation

Qi
j,kP k

i = −Qi
jP

k
i,k

implies that

Corollary 28. For any vector field W defined in a neighborhood of M∫

M

(
W i
)
,k P k

i =
∫

M

(P i
jW

j),kP k
i + (Qi

jW
j),kP k

i (43)

=
∫

M

W jQi
j,kP k

i +
∫

∂M

W iP k
i νk (44)

= −
∫

M

W jQi
jP

k
i,k +

∫

∂M

W iP k
i νk. (45)
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50. Forestier, A., Gavrilyuk, S.: Criterion of hyperbolicity for non-conservative quasilinear systems admitting a partially

convex conservation law. Math. Meth. Appl. Sci. 3(1), 21482158 (2011)
51. Fosdick, R., Virga, E.G.: A variational proof of the stress theorem of Cauchy. Arch. Ration. Mech. Anal. 105, 95–

103 (1989)
52. Fosdick, R.: Observations concerning virtual power. Math. Mech. Solids 16, 573–585 (2011)
53. Fosdick, R.: On the principle of virtual power for arbitrary parts of a body. Contin. Mech. Thermodyn. 23, 483–489 (2011)
54. Francfort, G.A., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Sol-

ids 46(8), 1319–1342 (1998)
55. Gavrilyuk, S., Gouin, H.: A new form of governing equations of fluids arising from Hamilton’s principle. Int. J. Eng.

Sci. 37, 1495–1520 (1999)
56. Gavrilyuk, S., Gouin, H.: Geometric evolution of the Reynolds stress tensor in three-dimensional turbulence. In: Greco

A, Rionero S, Ruggeri T (eds), World Scientific, pp. 182–190 (2010). ISBN 978-981-43170-41-2
57. Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid

flow at small length scales. Arch. Ration. Mech. Anal. 182, 513–554 (2006)
58. Fried, E., Gurtin, M.E.: A continuum mechanical theory for turbulence: a generalized Navier -Stokes-equation with

boundary conditions. Theor. Comput. Fluid Dyn. 182, 513–554 (2008)
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110. Salençon, J.: Mécanique des milieux continus. Ed. Ellipses (1988)–(1995), Handbook of Continuum Mechanics, Ed.
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111. Schwartz, L.: Théorie des Distributions. Hermann, Paris (1973)

112. Schuricht, F.: A new mathematical foundation for contact interactions in continuum physics. Arch. Ration. Mech.
Anal. 184, 495–551 (2007)

113. Seppecher, P.: Etude des conditions aux limites en théorie du second gradient: cas de la capillarité. C. R. Acad. Sci.
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